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Summary. The comparison of several finite difference methods for ideal magneto-
hydrodynamics (MHD) is presented. Compared finite difference methods include
composite schemes, central scheme, WENO, component wise CWENO and public
freely available packages Nirvana and Flash. 1D Cartesian tests concern smooth,
Brio-Wu and intermediate shock formation problems. From 2D Cartesian tests we
shortly present Orszag-Tang vortex problem and shock-cloud interaction problem.
As we are interested in the generalization of schemes from Cartesian to cylindrical
r − z geometry, we include also generalization of composite and CWENO schemes
to cylindrical geometry with their application to 2D conical z-pinch problem.

1 Introduction

For simplicity we use the system of ideal magneto-hydrodynamics (MHD)
equations in dimensionless units (with magnetic permeability µ = 1)

∂%

∂t
+∇ · (%v) = 0, (1)

∂(%v)
∂t

+∇ · (%vvT + P?I3×3 −BBT
)

= 0, (2)

∂B
∂t

+∇ · (vBT −BvT) = 0, (3)

∂E

∂t
+∇ · [v (E + P?)−B(v ·B)] = 0, (4)

where % is mass density, v velocity, B magnetic induction, E total energy
and P ? is the sum of hydrodynamic and magnetic pressures P ? = p + B2/2.
Thermodynamical pressure p can be computed from equation of state for ideal
gas p = (γ − 1)

[
E − %v2/2−B2/2

]
, where γ is ideal gas constant (ratio of

specific heats). The symbol I3×3 denotes 3×3 unit matrix and T transposition.
The MHD system (1)–(4) is coupled with constraint
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∇ ·B = 0 (5)

following directly from Maxwell equations. Using the equation (3) one can
verify, that the divergence of solenoidal magnetic field doesn’t change in time,
i.e. if the condition (5) is satisfied at initial time, it remains valid at any time
later. Generally, this property does not hold for a numerical solutions of the
system and special techniques have to be used for keeping numerical magnetic
field solenoidal.

2 Cartesian geometry

We first shortly describe numerical methods which have been used for compar-
isons and then present their performance on several 1D and 2D tests in Carte-
sian geometry. The numerical methods include composite, central, WENO and
component wise CWENO finite difference schemes together with the methods
used in Nirvana (version 3, http://nirvana-code.aip.de) and Flash (ver-
sion 2.5, http://flash.uchicago.edu) free available packages. All methods
are of finite difference type and all results have been computed on rectangu-
lar uniform mesh. Composite scheme [9] performs one Lax-Friendrichs (LF)
step after n − 1 Lax-Wendroff (LW) steps and is denoted as LWLFn. The
diffusive LF step serves as a consistent filter removing dispersive LW oscil-
lations appearing behind shock waves. The LW scheme itself is second order
accurate, while the LF and LWLFn ones only first. Central scheme (source
code published in [2]) on the staggered grid uses limited piecewise polyno-
mial reconstruction from cell averages. It requires neither Riemann solver nor
eigen-decomposition and also avoids dimensional splitting. WENO scheme
[8] uses convex weighted combination of essentially non-oscillatory schemes
on several stencils for space discretization and Runge-Kutta (RK) methods
for time integrating. It is fifth order accurate in space and we denote it as
WENO3 in case of RK3 (TVD) time integration method and WENO5 in
case of RK4 (non-TVD) method. WENO requires local eigenvector decom-
position ([10]) which classifies it to be the slowest scheme from our choice.
Avoiding eigen-decomposition and applying WENO procedure directly to the
conserved quantities we obtain CWENO (Component-wise WENO) scheme.
After each time step of the above finite difference scheme the magnetic field is
corrected to numerically satisfy the solenoidal condition (5) by the constrained
transport method [5, 11]. Flash [6] package uses MUSCL-type limited gradi-
ent reconstruction method. Nirvana [12] employs second order semi-discrete
Godunov-type central method.

2.1 Smooth periodic problem in 1D

The first 1D problem originates in [7] for Euler equations however it provides
an exact solution (periodic in ρ and constant in v,B, p) for the MHD system
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as well. We employ the particular exact solution %(x, t) = 1 + 0.2 sin(π(x −
t)), vx(x, t) = 1, By(x, t) = 1, p(x, t) = 1 which we treat on interval x ∈ [0, 1]
till final time t = 1 with periodic boundary conditions and γ = 1.4. Table 1
shows for all numerical methods absolute L1 errors of density on the grid
with 1600 cells (which we denote by L1(%, 1600)) together with the numerical
order of accuracy (NOA) given by log2(L1(%, 800)/L1(%, 1600)). As expected:

Table 1. Convergence for smooth periodic problem – L1(%, 1600) errors and the
numerical order of accuracy (NOA) log2(L1(%, 800)/L1(%, 1600)).

scheme LWLF12 LW Central CWENO5 WENO3 WENO5 Flash Nirvana3

L1(%, 1600) 2.5e-04 5.35e-07 1.01e-06 8.60e-14 1.21e-12 2.05e-14 2.51e-07 9.08e-07

NOA 1.0 2.0 2.4 5.0 3.1 5.0 2.1 2.1

the composite scheme is first order accurate; LW, central, Flash and Nirvana
are second order; WENO3 is third order; WENO5 and CWENO5 are fifth
order.

2.2 Brio-Wu problem in 1D

The Brio-Wu Riemann problem is classical MHD test problem [3] used in
almost all papers numerically treating MHD equations. Here we present only
similar results as for previous periodic problem. Table 2 shows L1(%, 1600)
deviations of numerical solution (on mesh with 1600 cells) for density from
a reference solution. As the reference solution we use Flash solution with
6400 cells. NOA log2(L1(%, 800)/L1(%, 1600)) is presented in Table 2 too. As
expected, all the numerical methods are first order accurate for this problem
involving discontinuous waves.

Table 2. Convergence for Brio-Wu test problem – L1(%, 1600) deviations from Flash
solution using 6400 cells and the NOA log2(L1(%, 800)/L1(%, 1600)).

scheme LWLF12 Central CWENO3 CWENO5 WENO3 WENO5 Flash Nirvana3

L1(%, 1600) 2.6e-03 2.1e-03 1.4e-03 1.4e-03 1.0e-03 1.0e-03 6.2e-04 1.5e-03

NOA 0.7 1.0 1.0 1.0 1.0 1.0 1.2 1.0

2.3 Intermediate shock formation in 1D

This test problem, originating in [8], starts from smooth initial conditions
from which after some time shocks develop. Initially, By(x) = sin(2πx)/2
for x ∈ [0, 1] and all other conservative quantities are computed with us-
ing generalized Riemann invariants. All quantities are normalized to % = 1,
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v = (0, 0, 0)T , Bx = 1, Bz = 0 and p = 1 at points where By = 0. Periodic
boundary conditions are applied. Table 3 presents L1(By, 1600) deviations of
By numerical solutions with 1600 cells from the reference WENO5 solution
using 6400 cells together with the NOA log2(L1(%, 800)/L1(%, 1600)) at three
different times. At time t = 0.25 the solution is still smooth (see Fig. 1(a))
and the schemes have the NOA close to that one for smooth test presented in
Table 1. In Fig. 1(a) the local deviation |unum(x)− uref (x)| of the numerical
solution from the reference one is continuous and the cumulative deviation∫ x

0
|unum(x′) − uref (x′)|dx′ is smooth function of x showing that the L1 de-

viation is distributed over the whole domain x ∈ [0, 1]. At time t = 0.6 two
shocks are already formed around x = 0.13 and 0.63 (see Fig. 1(b)) and the
NOA decreases rapidly towards one when L1 deviations are evaluated on the
whole computational domain x ∈ [0, 1], while keeping high values when L1

deviations are evaluated on x ∈ [0.2, 0.4] where By still has smooth profile.
In Fig. 1(b) the local deviation |unum(x)− uref (x)| is close to delta function
at two shocks and the cumulative deviation

∫ x

0
|unum(x′) − uref (x′)|dx′ has

jumps at two shocks showing that most L1 deviation is concentrated around
the shocks. At time t = 1.0 the NOA is low even on sub-domain x ∈ [0.2, 0.4]
where By is smooth, however the shock, which is now at x = 0.5 has already
passed through this sub-domain (see Fig. 1(c)).

Table 3. Convergence for intermediate shock formation problem at three times
t = 0.25, 0.6, 1 – L1(B

y, 1600) deviations (on x ∈ [0, 1]) from WENO5 solution using
6400 cells and the NOA log2(L1(%, 800)/L1(%, 1600)) computed from deviations on
x ∈ [0, 1] and on x ∈ [0.2, 0.4].

scheme LWLF12 Central CWENO3 CWENO5 WENO3 WENO5 Flash

t = 0.25, L1(B
y, 1600) 9.3e-05 2.8e-06 1.5e-10 8.1e-12 1.5e-10 9.7e-12 7.8e-07

NOA on x ∈ [0, 1] 1.0 2.3 3.1 5.1 3.1 5.1 2.1

t = 0.6, L1(B
y, 1600) 7.4e-04 4.4e-04 2.3e-04 2.3e-04 2.5e-04 2.5e-04 1.8e-04

NOA on x ∈ [0, 1] 1.1 1.2 1.2 1.2 1.2 1.2 1.3
NOA on [0.2, 0.4] 1.0 2.4 4.2 4.3 4.9 5.0 1.9

t = 1, L1(B
y, 1600) 1.0e-03 7.2e-04 6.9e-04 6.9e-04 3.5e-04 3.5e-04 1.9e-04

NOA on x ∈ [0, 1] 0.9 1.0 0.6 0.6 1.1 1.1 1.1
NOA on [0.2, 0.4] 1.0 1.2 1.4 1.4 1.5 1.8 1.5

2.4 Orszag-Tang vortex problem in 2D

The Orszag-Tang vortex problem is defined on a square (x, z) ∈ [0, 2π]×[0, 2π]
with initial conditions % = γ2,v = (− sin z, 0, sin x)T ,B = (− sin z, 0, sin(2x))T ,
p = γ with γ = 5/3. Periodic boundary condition are applied in both direc-
tions. Fig. 2(a) presents density contours at time t = 3 computed by Flash on
the mesh with 400× 400 cells. 1D cuts along line z = π in density are shown
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Fig. 1. Solution By(x) by dotted line, local deviation |unum(x) − uref (x)| (of
numerical solution from reference one) by solid line and cumulative deviation∫ x

0
|unum(x′) − uref (x′)|dx′ by dashed line for composite LWLF12 scheme (other

schemes produce similar plots) with 400 cells at three times t = 0.25, 0.6, 1. Cumu-
lative deviation at point x = 1 equals 9.7e-7 for t = 0.25, 6.8e-6 for t = 0.6 and
1.1e-5 for t = 0.1.

for all schemes in Fig. 2(b)-(c), where the differences between the schemes can
be seen. Results are for clarity split into 2 Figs. with identical axes and one
reference (Flash) solution. Results can be compared with [2, 4, 8, 12].

2.5 Shock cloud interaction problem in 2D

The initial conditions for the shock cloud interaction problem [4, 11, 12]
consist of two states in (x, z) ∈ [−1/2, 1/2] × [−1/2, 1/2] separated by
shock discontinuity along line x = 0.1. The left state is defined by values
% = 3.86859, v = (0, 0, 0)T , B = (0, 2.1826182,−2.1826182)T , p = 167.345
while the right state is defined by values % = 1, v = (−11.2536, 0, 0)T ,
B = (0, 0.56418958, 0.56418958)T , p = 1. At point (0.3, 0) a spherical den-
sity clump with radius 0.15 and constant density % = 10.0 and pressure p = 1
is located. On contour map of pressure in Fig. 2 (d) we show result of Nirvana
scheme computed on grid with 400 × 400 cells at time t = 0.06. Compos-
ite scheme has remarkably lower sharpness of shock wave, while Nirvana and
Flash have both much better shock wave resolution, however the profile of
density clump deformed by passing shock wave differs. The 2D profile from
CWENO is closer to Nirvana. WENO scheme failed for this test during compu-
tation. 1D cuts of pressure in Fig. 2(e)-(f) along the line z = 0 show profiles of
all methods. More differences can be seen in composite scheme results, which
profiles are in some regions shifted, e.g. transmitted shock wave behind the
clump is slower.

3 Cylindrical geometry

In Cartesian geometry, there are no source terms and the MHD system (1)–
(4) is in conservative form. On the other hand, in cylindrical geometry the
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Fig. 2. Density contours for Orszag-Tang vortex by Flash (a); 1D slices in density
along line z = π for Orszag-Tang vortex (b), (c); pressure contours for shock-cloud
interaction problem by Nirvana (d); 1D slices in pressure along line z = 0 for shock-
cloud interaction problem (e), (f).

divergence has the form ∇cyl ≡ (1/r+∂/∂r, 1/r ∂/∂ϕ, ∂/∂z) which introduces
geometrical source terms and the system is not conservative. Most of the geo-
metric source terms can be included into the fluxes by multiplying the MHD
system (except the equation for Bϕ) by radius r. Then the source terms re-
main only in two equations for momentum conservation in r and ϕ directions.
We have available only two methods - composite and CWENO schemes in
2D cylindrical r − z geometry. Both LW and LF schemes in the composite
use simple averaging to get the source terms on staggered mesh, just LW cor-
rector uses sources from previous time step. CWENO scheme in cylindrical
geometry has been developed as extension from Cartesian geometry. It em-
ploys the same weighted approximation procedure as for fluxes evaluation to
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get the source terms at the edges midpoints. The sources are averaged from
the edges midpoints to get the source term inside the cell. Flash [6] supports
MHD only in Cartesian geometry, we were quite surprised that with MHD
setup in cylindrical geometry Flash happily computes in Cartesian geometry
without any warning. Nirvana [12] does not include cylindrical MHD.

3.1 Conical z-pinch in 2D

This test coming from [1] simulates compression of conical z-pinch by magnetic
field. The problem is solved on rectangular area (r, z) ∈ [0, 1.3] × [0, 1] with
initial conditions given by values % = 1, B = (0, 0, 0)T for r ≤ 1 + 0.3z holds
and by values % = 10−4, B = (0,

√
2/r, 0)T elsewhere. Velocity and pressure

are same in the whole area v = (0, 0, 0)T and p = 10−4. Free boundary
conditions on top at z = 1, bottom at z = 0 and free on right at r = 1.3 except
Dirichlet boundary conditions Bϕ =

√
2/r for Bϕ keeping the tangential

magnetic induction. Fig. 3 presents pressure contours and velocity fields by
arrows obtained for this problem by composite (a) and CWENO (b) cylindrical
schemes at time t = 0.63 on grid with 400 × 400 cells. Composite scheme is
not able to resolve instabilities, seen in CWENO result. Similar instabilities
appear also in [1].

(a) (b)

Fig. 3. By contours and velocity field by arrows of LWLF80 (a) and CWENO5 (b)
for conical z-pinch in cylindrical geometry.

4 Conclusion

Selected finite difference methods have been applied to a set of 1D and 2D
test problems in Cartesian geometry and their numerical results have been
compared. The results of composite schemes are the worst between others
in the sense of resolution discontinuities. The most precise results in regions
of smooth solution are typically obtained by WENO scheme, however it is
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very slow due to eigenvector decomposition and it fails in some cases as e.g.
for shock cloud interaction problem. In most cases component-wise CWENO
scheme produces results very close to WENO, however in some cases, as e.g. for
Brio-Wu problem, it produces very mild oscillations in regions of flat solution
between the waves. In general it seems that the best results are obtained from
Flash code, which is moreover remarkably fast. Nirvana produces also very
good results. Composite and CWENO have been generalized to cylindrical
r − z geometry.
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